Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(4): 113973, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38507406

RESUMO

We identified and validated a collection of circular RNAs (circRNAs) in Drosophila melanogaster. We show that depletion of the pro-viral circRNA circATP8B(2), but not its linear siblings, compromises viral infection both in cultured Drosophila cells and in vivo. In addition, circATP8B(2) is enriched in the fly gut, and gut-specific depletion of circATP8B(2) attenuates viral replication in an oral infection model. Furthermore, circATP8B(2) depletion results in increased levels of reactive oxygen species (ROS) and enhanced expression of dual oxidase (Duox), which produces ROS. Genetic and pharmacological manipulations of circATP8B(2)-depleted flies that reduce ROS levels rescue the viral replication defects elicited by circATP8B(2) depletion. Mechanistically, circATP8B(2) associates with Duox, and circATP8B(2)-Duox interaction is crucial for circATP8B(2)-mediated modulation of Duox activity. In addition, Gαq, a G protein subunit required for optimal Duox activity, acts downstream of circATP8B(2). We conclude that circATP8B(2) regulates antiviral defense by modulating Duox expression and Duox-dependent ROS production.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , RNA Circular , Espécies Reativas de Oxigênio , Animais , Espécies Reativas de Oxigênio/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Drosophila melanogaster/imunologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Replicação Viral , RNA/metabolismo , RNA/genética , NADPH Oxidases/metabolismo , NADPH Oxidases/genética , Oxidases Duais/metabolismo , Oxidases Duais/genética
2.
Environ Pollut ; 347: 123586, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38467368

RESUMO

Inorganic arsenic (iAs) causes cancer by initiating dynamic transitions between epithelial and mesenchymal cell phenotypes. These transitions transform normal cells into cancerous cells, and cancerous cells into metastatic cells. Most in vitro models assume that transitions between states are binary and complete, and do not consider the possibility that intermediate, stable cellular states might exist. In this paper, we describe a new, two-hit in vitro model of iAs-induced carcinogenesis that extends to 28 weeks of iAs exposure. Through week 17, the model faithfully recapitulates known and expected phenotypic, genetic, and epigenetic characteristics of iAs-induced carcinogenesis. By 28 weeks, however, exposed cells exhibit stable, intermediate phenotypes and epigenetic properties, and key transcription factor promoters (SNAI1, ZEB1) enter an epigenetically poised or bivalent state. These data suggest that key epigenetic transitions and cellular states exist during iAs-induced epithelial-to-mesenchymal transition (EMT), and that it is important for our in vitro models to encapsulate all aspects of EMT and the mesenchymal-to-epithelial transition (MET). In so doing, and by understanding the epigenetic systems controlling these transitions, we might find new, unexpected opportunities for developing targeted, cell state-specific therapeutics.


Assuntos
Arsênio , Neoplasias , Humanos , Arsênio/toxicidade , Fatores de Transcrição/metabolismo , Epigênese Genética , Carcinogênese/induzido quimicamente
3.
Cell Death Dis ; 14(10): 664, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37816729

RESUMO

Metabolic reprogramming has been recognized as one of the major mechanisms that fuel tumor initiation and progression. Our previous studies demonstrate that activation of Drp1 promotes fatty acid oxidation and downstream Wnt signaling. Here we investigate the role of Drp1 in regulating glycogen metabolism in colon cancer. Knockdown of Drp1 decreases mitochondrial respiration without increasing glycolysis. Analysis of cellular metabolites reveals that the levels of glucose-6-phosphate, a precursor for glycogenesis, are significantly elevated whereas pyruvate and other TCA cycle metabolites remain unchanged in Drp1 knockdown cells. Additionally, silencing Drp1 activates AMPK to stimulate the expression glycogen synthase 1 (GYS1) mRNA and promote glycogen storage. Using 3D organoids from Apcf/f/Villin-CreERT2 models, we show that glycogen levels are elevated in tumor organoids upon genetic deletion of Drp1. Similarly, increased GYS1 expression and glycogen accumulation are detected in xenograft tumors derived from Drp1 knockdown colon cancer cells. Functionally, increased glycogen storage provides survival advantage to Drp1 knockdown cells. Co-targeting glycogen phosphorylase-mediated glycogenolysis sensitizes Drp1 knockdown cells to chemotherapy drug treatment. Taken together, our results suggest that Drp1-loss activates glucose uptake and glycogenesis as compensative metabolic pathways to promote cell survival. Combined inhibition of glycogen metabolism may enhance the efficacy of chemotherapeutic agents for colon cancer treatment.


Assuntos
Neoplasias do Colo , Glicogenólise , Humanos , Sobrevivência Celular , Dinâmica Mitocondrial , Transformação Celular Neoplásica , Glicogênio/metabolismo , Neoplasias do Colo/genética , Dinaminas/metabolismo
4.
ACS Appl Mater Interfaces ; 15(39): 45676-45688, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37733382

RESUMO

Adhesives with robust but readily detachable wet tissue adhesion are of great significance for wound closure. Polyelectrolyte complex adhesive (PECA) is an important wet tissue adhesive. However, its relatively weak cohesive and adhesive strength cannot satisfy clinical applications. Herein, modified tannic acid (mTA) with a catechol group, a long alkyl hydrophobic chain, and a phenyl group was prepared first, and then, it was mixed with acrylic acid (AA) and polyethylenimine (PEI), followed by UV photopolymerization to make a wet tissue adhesive hydrogel with tough cohesion and adhesion strength. The hydrogel has a strong wet tissue interfacial toughness of ∼1552 J/m2, good mechanical properties (∼7220 kPa cohesive strength, ∼873% strain, and ∼33,370 kJ/m3 toughness), and a bursting pressure of ∼1575 mmHg on wet porcine skin. The hydrogel can realize quick and effective adhesion to various wet biological tissues including porcine skin, liver, kidney, and heart and can be changed easily with triggering urea solution to avoid tissue damage or uncomfortable pain to the patient. This biosafe adhesive hydrogel is very promising for wound closure and may provide new ideas for the design of robust wet tissue adhesives.


Assuntos
Adesivos Teciduais , Humanos , Animais , Suínos , Adesivos Teciduais/farmacologia , Hidrogéis , Coração , Rim , Taninos , Adesivos
5.
Eur J Med Chem ; 259: 115684, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37542989

RESUMO

Recently, histone lysine specific demethylase 1 (LSD1) has become an emerging and promising target for cancer immunotherapy. Herein, based on our previously reported LSD1 inhibitor DXJ-1 (also called 6x), a series of novel acridine-based LSD1 inhibitors were identified via structure optimizations. Among them, compound 5ac demonstrated significantly enhanced inhibitory activity against LSD1 with an IC50 value of 13 nM, about 4.6-fold more potent than DXJ-1 (IC50 = 73 nM). Molecular docking studies revealed that compound 5ac could dock well into the active site of LSD1. Further mechanism studies showed that compound 5ac inhibited the stemness and migration of gastric cancer cells, and reduced the expression of PD-L1 in BGC-823 and MFC cells. More importantly, BGC-823 cells were more sensitive to T cell killing when treated with compound 5ac. Besides, the tumor growth was also suppressed by compound 5ac in mice. Together, 5ac could serve as a promising candidate to enhance immune response in gastric cancer.


Assuntos
Antineoplásicos , Neoplasias Gástricas , Animais , Camundongos , Antineoplásicos/química , Relação Estrutura-Atividade , Neoplasias Gástricas/tratamento farmacológico , Simulação de Acoplamento Molecular , Acridinas/farmacologia , Linhagem Celular Tumoral , Imunidade , Histona Desmetilases , Inibidores Enzimáticos/farmacologia , Proliferação de Células
6.
Transpl Int ; 36: 10808, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37181788

RESUMO

The objective of this study was to investigate the significance of portal vein reconstruction in segment IV of the liver on early postoperative liver function recovery in split liver transplantation. The clinical data of patients of right trilobe split liver transplantation in our center were analyzed and divided into two groups, including a group without portal vein reconstruction and a group with portal vein reconstruction. Clinical data of alanine aminotransferase (ALT), aspartate transaminase (AST), albumin (ALB), creatinine (Cr), total bilirubin (TB), alkaline phosphatase (ALP), gamma-glutamyl Transferase (GGT), lactic acid (Lac), and international normalized ratio (INR) levels were analyzed. The technique of segment IV portal vein reconstruction is beneficial to the early postoperative recovery of liver function. Statistically, there was no significant effect of portal vein reconstruction in the IV segment of the liver on the recovery of liver function within 1 week after split liver transplantation. There was no significant difference in survival rate between the control group and reconstruction group over the 6 months follow-up period after surgery.


Assuntos
Transplante de Fígado , Humanos , Transplante de Fígado/métodos , Veia Porta/cirurgia , Recuperação de Função Fisiológica , Fígado/cirurgia , Procedimentos Cirúrgicos Vasculares , Doadores Vivos
7.
Eur J Med Chem ; 251: 115255, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-36913900

RESUMO

LSD1 is overexpressed in various cancers and promotes tumor cell proliferation, tumor expansion, and suppresses immune cells infiltration and is closely associated with immune checkpoint inhibitors therapy. Therefore, the inhibition of LSD1 has been recognized as a promising strategy for cancer therapy. In this study, we screened an in-house small-molecule library targeting LSD1, an FDA-approved drug amsacrine for acute leukemia and malignant lymphomas was found to exhibit moderate anti-LSD1 inhibitory activity (IC50 = 0.88 µM). Through further medicinal chemistry efforts, the most active compound 6x increased anti-LSD1 activity significantly (IC50 = 0.073 µM). Further mechanistic studies demonstrated that compound 6x inhibited the stemness and migration of gastric cancer cell, and decreased the expression of PD-L1 (programmed cell death-ligand 1) in BGC-823 and MFC cells. More importantly, BGC-823 cells are more susceptible to T-cell killing when treated with compound 6x. Moreover, tumor growth was also suppressed by compound 6x in mice. Altogether, our findings demonstrated that acridine-based novel LSD1 inhibitor 6x may be a lead compound for the development of activating T cell immune response in gastric cancer cells.


Assuntos
Antineoplásicos , Neoplasias Gástricas , Animais , Camundongos , Antineoplásicos/química , Inibidores Enzimáticos/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Acridinas/farmacologia , Acridinas/uso terapêutico , Linhagem Celular Tumoral , Histona Desmetilases , Proliferação de Células
8.
Acta Otolaryngol ; 143(4): 334-339, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36994877

RESUMO

BACKGROUND: Geriatric 8 score (G8) was an independent prognostic factor for survival and toxicities in various malignancies, but it has never been tested in nasopharyngeal carcinoma (NPC). OBJECTIVES: To evaluate the value of G8 in predicting survival in elderly patients with NPC. MATERIAL AND METHODS: Patients with NPC aged ≥70 who received intensity-modulated radiation therapy were recruited into this study. The overall survival (OS), progression-free survival (PFS), locoregional recurrence rate (LRR), and distant metastasis rate (DMR) between the patients with G8 > 14 and G8 ≤ 14 were calculated using the Kaplan-Meier method and compared with the Log-rank test. Cox proportional hazards model was applied to perform univariate and multivariate analysis. RESULTS: G8 ≤ 14 had significantly reduced OS (p = .001) and PFS (p = .032) than those with G8 > 14 by log-rank test. G8 score remained an independent prognosticator for OS (HR = 0.490, 95% CI = 0.267-0.900, p = .021) and was a borderline significance towards PFS (HR = 0.639, 95% CI = 0.386-1.058, p = .082) in multivariate analysis. Grade 3-4 acute toxicities were significantly more common in patients with G8 ≤ 14 than in those with G8 > 14. CONCLUSIONS AND SIGNIFICANCE: G8 is useful in predicting the OS in elderly patients with NPC. Further prospective study stratified by G8 is needed to explore the value of CT in elderly patients with NPC.


Assuntos
Carcinoma , Neoplasias Nasofaríngeas , Radioterapia de Intensidade Modulada , Idoso , Humanos , Carcinoma Nasofaríngeo , Estudos Prospectivos , Neoplasias Nasofaríngeas/patologia , Estudos Retrospectivos , Recidiva Local de Neoplasia/patologia , Radioterapia de Intensidade Modulada/efeitos adversos , Prognóstico , Intervalo Livre de Doença , Estadiamento de Neoplasias
9.
J Med Chem ; 66(6): 3896-3916, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36856685

RESUMO

Histone lysine specific demethylase 1 (LSD1) has been recognized as an important epigenetic target for cancer treatment. Although several LSD1 inhibitors have entered clinical trials, the discovery of novel potent LSD1 inhibitors remains a challenge. In this study, the antipsychotic drug chlorpromazine was characterized as an LSD1 inhibitor (IC50 = 5.135 µM), and a series of chlorpromazine derivatives were synthesized. Among them, compound 3s (IC50 = 0.247 µM) was the most potent one. More importantly, compound 3s inhibited LSD1 in the cellular level and downregulated the expression of programmed cell death-ligand 1 (PD-L1) in BGC-823 and MFC cells to enhance T-cell killing response. An in vivo study confirmed that compound 3s can inhibit MFC cell proliferation without significant toxicity in immunocompetent mice. Taken together, our findings indicated that the novel LSD1 inhibitor 3s tethering a phenothiazine scaffold may serve as a lead compound for further development to activate T-cell immunity in gastric cancer.


Assuntos
Inibidores Enzimáticos , Neoplasias Gástricas , Animais , Camundongos , Inibidores Enzimáticos/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Linhagem Celular Tumoral , Clorpromazina/uso terapêutico , Linfócitos T/metabolismo , Proliferação de Células , Histona Desmetilases/metabolismo , Morte Celular , Relação Estrutura-Atividade
10.
PLoS Genet ; 18(10): e1010429, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36301822

RESUMO

Circular RNAs (circRNAs) are widely expressed in eukaryotes. However, only a subset has been functionally characterized. We identify and validate a collection of circRNAs in Drosophila, and show that depletion of the brain-enriched circRNA Edis (circ_Ect4) causes hyperactivation of antibacterial innate immunity both in cultured cells and in vivo. Notably, Edis depleted flies display heightened resistance to bacterial infection and enhanced pathogen clearance. Conversely, ectopic Edis expression blocks innate immunity signaling. In addition, inactivation of Edis in vivo leads to impaired locomotor activity and shortened lifespan. Remarkably, these phenotypes can be recapitulated with neuron-specific depletion of Edis, accompanied by defective neurodevelopment. Furthermore, inactivation of Relish suppresses the innate immunity hyperactivation phenotype in the fly brain. Moreover, we provide evidence that Edis encodes a functional protein that associates with and compromises the processing and activation of the immune transcription factor Relish. Importantly, restoring Edis expression or ectopic expression of Edis-encoded protein suppresses both innate immunity and neurodevelopment phenotypes elicited by Edis depletion. Thus, our study establishes Edis as a key regulator of neurodevelopment and innate immunity.


Assuntos
Imunidade Inata , RNA Circular , Animais , RNA Circular/genética , Imunidade Inata/genética , Fatores de Transcrição/genética , Drosophila/genética , Drosophila/metabolismo , Transdução de Sinais , RNA/genética
11.
PLoS Genet ; 18(10): e1010433, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36301831

RESUMO

Circular RNAs (circRNAs) are a new group of noncoding/regulatory RNAs that are particularly abundant in the nervous system, however, their physiological functions are underexplored. Here we report that the brain-enriched circular RNA Edis (Ect4-derived immune suppressor) plays an essential role in neuronal development in Drosophila. We show that depletion of Edis in vivo causes defects in axonal projection patterns of mushroom body (MB) neurons in the brain, as well as impaired locomotor activity and shortened lifespan of adult flies. In addition, we find that the castor gene, which encodes a transcription factor involved in neurodevelopment, is upregulated in Edis knockdown neurons. Notably, castor overexpression phenocopies Edis knockdown, and reducing castor levels suppresses the neurodevelopmental phenotypes in Edis-depleted neurons. Furthermore, chromatin immunoprecipitation analysis reveals that the transcription factor Relish, which plays a key role in regulating innate immunity signaling, occupies a pair of sites at the castor promoter, and that both sites are required for optimal castor gene activation by either immune challenge or Edis depletion. Lastly, Relish mutation and/or depletion can rescue both the castor gene hyperactivation phenotype and neuronal defects in Edis knockdown animals. We conclude that the circular RNA Edis acts through Relish and castor to regulate neuronal development.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/genética , RNA Circular/genética , Proteínas de Drosophila/genética , Fatores de Transcrição/genética , Corpos Pedunculados , Drosophila melanogaster/fisiologia
12.
Cell Death Differ ; 29(10): 1913-1927, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35332310

RESUMO

Cancer cells are known for their ability to adapt variable metabolic programs depending on the availability of specific nutrients. Our previous studies have shown that uptake of fatty acids alters cellular metabolic pathways in colon cancer cells to favor fatty acid oxidation. Here, we show that fatty acids activate Drp1 to promote metabolic plasticity in cancer cells. Uptake of fatty acids (FAs) induces mitochondrial fragmentation by promoting ERK-dependent phosphorylation of Drp1 at the S616 site. This increased phosphorylation of Drp1 enhances its dimerization and interaction with Mitochondrial Fission Factor (MFF) at the mitochondria. Consequently, knockdown of Drp1 or MFF attenuates fatty acid-induced mitochondrial fission. In addition, uptake of fatty acids triggers mitophagy via a Drp1- and p62-dependent mechanism to protect mitochondrial integrity. Moreover, results from metabolic profiling analysis reveal that silencing Drp1 disrupts cellular metabolism and blocks fatty acid-induced metabolic reprograming by inhibiting fatty acid utilization. Functionally, knockdown of Drp1 decreases Wnt/ß-catenin signaling by preventing fatty acid oxidation-dependent acetylation of ß-catenin. As a result, Drp1 depletion inhibits the formation of tumor organoids in vitro and xenograft tumor growth in vivo. Taken together, our study identifies Drp1 as a key mediator that connects mitochondrial dynamics with fatty acid metabolism and cancer cell signaling.


Assuntos
Neoplasias do Colo , Dinaminas , Neoplasias do Colo/genética , Dinaminas/genética , Dinaminas/metabolismo , Ácidos Graxos , Humanos , Dinâmica Mitocondrial/fisiologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Fosforilação , Via de Sinalização Wnt , beta Catenina/metabolismo
13.
Cell Death Dis ; 12(11): 960, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663797

RESUMO

Aberrant activation of endoplasmic reticulum (ER) stress by extrinsic and intrinsic factors contributes to tumorigenesis and resistance to chemotherapies in various cancer types. Our previous studies have shown that the downregulation of PHLPP, a novel family of Ser/Thr protein phosphatases, promotes tumor initiation, and progression. Here we investigated the functional interaction between the ER stress and PHLPP expression in colon cancer. We found that induction of ER stress significantly decreased the expression of PHLPP proteins through a proteasome-dependent mechanism. Knockdown of PHLPP increased the phosphorylation of eIF2α as well as the expression of autophagy-associated genes downstream of the eIF2α/ATF4 signaling pathway. In addition, results from immunoprecipitation experiments showed that PHLPP interacted with eIF2α and this interaction was enhanced by ER stress. Functionally, knockdown of PHLPP improved cell survival under ER stress conditions, whereas overexpression of a degradation-resistant mutant PHLPP1 had the opposite effect. Taken together, our studies identified ER stress as a novel mechanism that triggers PHLPP downregulation; and PHLPP-loss promotes chemoresistance by upregulating the eIF2α/ATF4 signaling axis in colon cancer cells.


Assuntos
Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Regulação para Baixo/genética , Resistencia a Medicamentos Antineoplásicos , Estresse do Retículo Endoplasmático , Fator de Iniciação 2 em Eucariotos/metabolismo , Proteínas Nucleares/genética , Fosfoproteínas Fosfatases/genética , Fator 4 Ativador da Transcrição/metabolismo , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Irinotecano/farmacologia , Irinotecano/uso terapêutico , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Ligação Proteica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Tunicamicina/farmacologia , Tunicamicina/uso terapêutico
14.
Prog Org Coat ; 161: 106486, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34511697

RESUMO

Infectious diseases resulted from transmitting of bacteria or virus like COVID-19 via air-borne droplets have brought severe threat to human beings worldwide. Cutting the spreading paths to obtain clean air is one of the promising strategies to prevent people from such dangerous diseases. In this work, we have employed a strategy of spray coating in combination with vapor induced phase separation to prepare a composite coating film to fulfill that purpose. A stable mixture suspension containing micelles of block copolymer of poly(styrene-block-butadiene-block-styrene) and TiO2 nanoparticles was sprayed onto stainless steel mesh to evaporate solvent in non-solvent vapor atmospheres. A water vapor atmosphere and an ethanol vapor atmosphere were in turn employed to improve the mechanical strength of the obtained coating film. The porous microstructure, the porosity, and the superhydrophobicity of the coating film were carefully characterized and analyzed. The air pressure-drop of the coating film was determined to be lower than 100 Pa, indicating a high air permeability. Moreover, a foggy air containing E. coli was pressed through the coating film via a home-made apparatus to simulate the air purification system, where E. coli contained air-borne droplets were intercepted by the film matrix in a physical manner, and the bacteria was photocatalytically inactivated at the meantime. A filtration efficiency of 99.7% and a 99.6% efficiency of real-time photocatalytic inactivation of E. coli demonstrate the promising potential of the coating film.

15.
Langmuir ; 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34133182

RESUMO

Gel-mediated crystallization is a common system to produce self-organized materials, which is fundamental to the development of bottom-up approaches to functional complex materials. Mineralization in hydrogel matrices nevertheless remains empirical in the generation of crystallization products with tailored heterogeneous structures. We demonstrate that the employment of the hydrogels with proper cationic diffusivity can trigger the consecutive growth of oriented, granular-rhombohedral heterogeneous structures. The controllable morphogenesis leads to continuous calcitic CaCO3 films comprising spatial heterogeneity, where epitaxial match assumedly favors the successive deposition of both granular and rhombohedral layers. The scenario of consecutive growth is disclosed, where the thickness of the granular layers can become a valuable indicator to reflect the retardancy degree of crystallization. The evaluation of the physicochemical properties of the hydrogels finally establishes a direct correlation between the cationic diffusivity of the hydrogels and the appearance of the heterogeneous structures. The current work therefore sheds light on the implementation of rational morphogenetic approaches to crystalline materials with tailored complex architectures.

18.
J Med Chem ; 64(5): 2466-2488, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33619958

RESUMO

As a flavin adenine dinucleotide (FAD)-dependent monoamine oxidase, lysine specific demethylase 1 (LSD1/KDM1A) functions as a transcription coactivator or corepressor to regulate the methylation of histone 3 lysine 4 and 9 (H3K4/9), and it has emerged as a promising epigenetic target for anticancer treatment. To date, numerous inhibitors targeting LSD1 have been developed, some of which are undergoing clinical trials for cancer therapy. Although only two reversible LSD1 inhibitors CC-90011 and SP-2577 are in the clinical stage, the past decade has seen remarkable advances in the development of reversible LSD1 inhibitors. Herein, we provide a comprehensive review about structures, biological evaluation, and structure-activity relationship (SAR) of reversible LSD1 inhibitors.


Assuntos
Inibidores Enzimáticos/uso terapêutico , Histona Desmetilases/antagonistas & inibidores , Compostos Orgânicos/uso terapêutico , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Estrutura Molecular , Neoplasias/tratamento farmacológico , Compostos Orgânicos/química , Compostos Orgânicos/farmacologia , Relação Estrutura-Atividade
19.
Oncogene ; 39(44): 6789-6801, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32973331

RESUMO

Wnt signaling dysregulation promotes tumorigenesis in colorectal cancer (CRC). We investigated the role of PTPRF, a receptor-type tyrosine phosphatase, in regulating Wnt signaling in CRC. Knockdown of PTPRF decreased cell proliferation in patient-derived primary colon cancer cells and established CRC cell lines. In addition, the rate of proliferation as well as colony formation ability were significantly decreased in tumor organoids grown in 3D, whereas the number of differentiated tumor organoids were markedly increased. Consistently, knockdown of PTPRF resulted in a decrease in the expression of genes associated with cancer stem cells downstream of Wnt/ß-catenin signaling. Treating PTPRF knockdown cells with GSK3 inhibitor rescued the expression of Wnt target genes suggesting that PTPRF functions upstream of the ß-catenin destruction complex. PTPRF was found to interact with LRP6 and silencing PTPRF largely decreased the activation of LRP6. Interestingly, this PTPRF-mediated activation of Wnt signaling was blocked in cells treated with clathrin endocytosis inhibitor. Furthermore, knockdown of PTPRF inhibited xenograft tumor growth in vivo and decreased the expression of Wnt target genes. Taken together, our studies identify a novel role of PTPRF as an oncogenic protein phosphatase in supporting the activation of Wnt signaling in CRC.


Assuntos
Carcinogênese/patologia , Neoplasias Colorretais/patologia , Proteínas Oncogênicas/metabolismo , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Via de Sinalização Wnt , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Células-Tronco Neoplásicas/patologia , Proteínas Oncogênicas/genética , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Cell Death Dis ; 11(9): 736, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32913185

RESUMO

Colon tumors grow in an adipose tissue-enriched microenvironment. Locally advanced colon cancers often invade into surrounding adipose tissue with a direct contact with adipocytes. We have previously shown that adipocytes promote tumor growth by modulating cellular metabolism. Here we demonstrate that carnitine palmitoyltransferase I (CPT1A), a key enzyme controlling fatty acid oxidation (FAO), was upregulated in colon cancer cells upon exposure to adipocytes or fatty acids. In addition, CPT1A expression was increased in invasive tumor cells within the adipose tissue compared to tumors without direct contact with adipocytes. Silencing CPT1A abolished the protective effect provided by fatty acids against nutrient deprivation and reduced tumor organoid formation in 3D culture and the expression of genes associated with cancer stem cells downstream of Wnt/ß-catenin. Mechanistically, CPT1A-dependent FAO promoted the acetylation and nuclear translocation of ß-catenin. Furthermore, knockdown of CPT1A blocked the tumor-promoting effect of adipocytes in vivo and inhibited xenograft tumor initiation. Taken together, our findings identify CPT1A-depedent FAO as an essential metabolic pathway that enables the interaction between adipocytes and colon cancer cells.


Assuntos
Adipócitos/metabolismo , Carnitina O-Palmitoiltransferase/metabolismo , Neoplasias do Colo/genética , Animais , Feminino , Humanos , Masculino , Camundongos , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...